初中数学公理有哪些
初中数学有很多细碎的知识点,看起来是比较多,但是只要熟记就不会有啥大问题。尤其是几何定理,要在课堂上认真听,理解其原理才可以更好的掌握。
初中数学公理有哪些
初中几何公式定理:线
1、同角或等角的余角相等
2、过一点有且只有一条直线和已知直线垂直
3、过两点有且只有一条直线
4、两点之间线段最短
5、同角或等角的补角相等
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等
10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
12、定理1:关于某条直线对称的两个图形是全等形
13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
初中几何公式定理:角
16、同位角相等,两直线平行
17、内错角相等,两直线平行
18、同旁内角互补,两直线平行
19、两直线平行,同位角相等
20、两直线平行,内错角相等
21、两直线平行,同旁内角互补
22、定理1:在角的平分线上的点到这个角的两边的距离相等
23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上
24、角的平分线是到角的两边距离相等的所有点的集合
初中几何公式定理:三角形
25、定理:三角形两边的和大于第三边
26、推论:三角形两边的差小于第三边
27、定理:三角形三个内角的和等于180°
28、推论1:直角三角形的两个锐角互余
29、推论2:三角形的一个外角等于和它不相邻的两个内角的和
30、推论3:三角形的一个外角大于任何一个和它不相邻的内角
31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方
32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形
初中几何公式定理:等腰、直角三角形
33、等腰三角形的性质定理:等腰三角形的两个底角相等
34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
35、等腰三角形的顶角平分线、底边上的中线和高互相重合
36、推论3:等边三角形的各角都相等,并且每一个角都等于60°
37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
38、推论1:三个角都相等的三角形是等边三角形
39、推论2:有一个角等于60°的等腰三角形是等边三角形
40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
41、直角三角形斜边上的中线等于斜边上的一半
初中几何公式定理:相似、全等三角形
42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
46、判定定理3:三边对应成比例,两三角形相似(SSS)
47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
49、性质定理2:相似三角形周长的比等于相似比
50、性质定理3:相似三角形面积的比等于相似比的平方
51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等
52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等
53、推论:有两角和其中一角的对边对应相等的两个三角形全等
54、边边边公理:有三边对应相等的两个三角形全等
55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等
56、全等三角形的对应边、对应角相等
初中几何公式定理:线
1、同角或等角的余角相等
2、过一点有且只有一条直线和已知直线垂直
3、过两点有且只有一条直线
4、两点之间线段最短
5、同角或等角的补角相等
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等
10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
12、定理1:关于某条直线对称的两个图形是全等形
13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
初中几何公式定理:角
16、同位角相等,两直线平行
17、内错角相等,两直线平行
18、同旁内角互补,两直线平行
19、两直线平行,同位角相等
20、两直线平行,内错角相等
21、两直线平行,同旁内角互补
22、定理1:在角的平分线上的点到这个角的两边的距离相等
23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上
24、角的平分线是到角的两边距离相等的所有点的集合
初中几何公式定理:三角形
25、定理:三角形两边的和大于第三边
26、推论:三角形两边的差小于第三边
27、定理:三角形三个内角的和等于180°
28、推论1:直角三角形的两个锐角互余
29、推论2:三角形的一个外角等于和它不相邻的两个内角的和
30、推论3:三角形的一个外角大于任何一个和它不相邻的内角
31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方
32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形
初中几何公式定理:等腰、直角三角形
33、等腰三角形的性质定理:等腰三角形的两个底角相等
34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
35、等腰三角形的顶角平分线、底边上的中线和高互相重合
36、推论3:等边三角形的各角都相等,并且每一个角都等于60°
37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
38、推论1:三个角都相等的三角形是等边三角形
39、推论2:有一个角等于60°的等腰三角形是等边三角形
40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
41、直角三角形斜边上的中线等于斜边上的一半
初中几何公式定理:相似、全等三角形
42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
46、判定定理3:三边对应成比例,两三角形相似(SSS)
47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
49、性质定理2:相似三角形周长的比等于相似比
50、性质定理3:相似三角形面积的比等于相似比的平方
51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等
52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等
53、推论:有两角和其中一角的对边对应相等的两个三角形全等
54、边边边公理:有三边对应相等的两个三角形全等
55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等
56、全等三角形的对应边、对应角相等
初中数学中考必考知识点
知识点1:直角坐标系与点的位置:
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,×轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点2:已知自变量的值求函数值:
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点3:基本函数的概念及性质:
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
初中数学概念总结
1.数的分类:
-自然数:正整数,包括0。
-整数:包括正整数、负整数和0。
-有理数:可以表示为两个整数的比值,包括整数和分数。
-无理数:不能表示为两个整数的比值,如根号2、π等。
-实数:包括有理数和无理数。
2.数的运算:
-加法:两个数相加得到和。
-减法:一个数减去另一个数得到差。
-乘法:两个数相乘得到积。
-除法:一个数除以另一个数得到商。
-平方:一个数乘以自己得到平方。
-开方:一个数的平方根。
-指数:底数的指数次幂。
-对数:指数运算的逆运算。
3.数的性质:
-奇偶性:能被2整除的数为偶数,不能被2整除的数为奇数。
-质数和合数:只能被1和自身整除的数为质数,能被其他数整除的数为合数。
-互质:两个数的最大公因数为1。
-因数和倍数:能整除一个数的数为因数,一个数的整数倍为倍数。
-最大公因数:两个或多个数的公共因数中最大的一个。
-最小公倍数:两个或多个数的公共倍数中最小的一个。
4.代数:
-代数式:用字母表示数的关系式。
-方程:含有未知数的等式。
-不等式:含有不等号的关系式。
-线性方程与一元一次方程:最高次数为1的方程。
-二元一次方程:含有两个未知数的一次方程。
-坐标系:平面上的点与数之间的对应关系。
-直线:平面上的点的集合,具有方程y=kx+b。
5.几何:
-图形的分类:点、线、面等基本图形。
-角:由两条射线共享一个端点所形成的图形。
-三角形:具有三条边和三个内角的多边形。
-直角三角形:其中一个角为直角的三角形。
-圆:由平面上的一点到另一点的距离恒定的点的集合。
-面积和体积:图形或物体所占的空间大小。